skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Harvey, Shannon_P"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The occurrence of unconventional superconductivity in cuprates has long motivated the search for manifestations in other layered transition metal oxides. Recently, superconductivity is found in infinite‐layer nickelate (Nd,Sr)NiO2and (Pr,Sr)NiO2thin films, formed by topotactic reduction from the perovskite precursor phase. A topic of much current interest is whether rare‐earth moments are essential for superconductivity in this system. In this study, it is found that with significant materials optimization, substantial portions of the La1−xSrxNiO2phase diagram can enter the regime of coherent low‐temperature transport (x = 0.14 ‐ 0.20), with subsequent superconducting transitions and a maximum onset of ≈9 K atx = 0.20. Additionally, the unexpected indication of a superconducting ground state in undoped LaNiO2is observed, which likely reflects the self‐doped nature of the electronic structure. Combining the results of (La/Pr/Nd)1−xSrxNiO2reveals a generalized superconducting dome, characterized by systematic shifts in the unit cell volume and in the relative electron‐hole populations across the lanthanides. 
    more » « less